На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
общая лексика
система фильтрации [информации]
любое ПО, фильтрующее входные данные с целью исключить попадание нежелательного материала
Смотрите также
общая лексика
CF
фильтрация контента
отсечение нежелательной информации (баннеры, спам, порно), получаемой из Интернета, например с электронной почтой. Осуществляется поиском в приходящих пакетах данных заданных ключевых слов или блокированием доступа к сайтам, содержащим нежелательный контент. Фильтрация может заключаться также в предотвращении попадания в почту файлов с объектами Active X или программами на Java для пресечения распространения вирусов
Смотрите также
In the theory of stochastic processes, filtering describes the problem of determining the state of a system from an incomplete and potentially noisy set of observations. While originally motivated by problems in engineering, filtering found applications in many fields from signal processing to finance.
The problem of optimal non-linear filtering (even for the non-stationary case) was solved by Ruslan L. Stratonovich (1959, 1960), see also Harold J. Kushner's work and Moshe Zakai's, who introduced a simplified dynamics for the unnormalized conditional law of the filter known as Zakai equation. The solution, however, is infinite-dimensional in the general case. Certain approximations and special cases are well understood: for example, the linear filters are optimal for Gaussian random variables, and are known as the Wiener filter and the Kalman-Bucy filter. More generally, as the solution is infinite dimensional, it requires finite dimensional approximations to be implemented in a computer with finite memory. A finite dimensional approximated nonlinear filter may be more based on heuristics, such as the extended Kalman filter or the assumed density filters, or more methodologically oriented such as for example the Projection Filters, some sub-families of which are shown to coincide with the Assumed Density Filters.
In general, if the separation principle applies, then filtering also arises as part of the solution of an optimal control problem. For example, the Kalman filter is the estimation part of the optimal control solution to the linear-quadratic-Gaussian control problem.